sábado, 6 de febrero de 2010

NANOELECTRÓNICA - ELECTRÓNICA MOLECULAR

Rosmar Niño Parra
CRF

La nanolectrónica estudia los fenómenos de transporte y distribución de carga y espín en la escala del nanómetro. Avances instrumentales en las últimas décadas han permitido la visualización en el espacio real y la manipulación controlada de los átomos. En paralelo las técnicas de litografía han ido reduciendo el tamaño de los motivos que se pueden fabricar, llegando en la actualidad la industria semiconductora a pistas de 90 nm en obleas de 300 mm de diámetro. Las dos aproximaciones científicas al mundo que separa lo atómico de lo macroscópico se conocen como "bottom-up" y "top-down". Éste es un mundo mesoscópico, donde las propiedades físicas no escalan con el tamaño y los efectos cuánticos como el confinamiento y la coherencia propician que añadir o quitar un átomo, haga que cambien drásticamente las cosas; es decir, un mundo donde el tamaño realmente importa. La implementación de la nanolectrónica en la tecnología actual será un proceso gradual, sustituyendo componentes individuales y eventualmente sistemas complejos. La microelectrónica, incluso con tamaños de puerta de transistor por debajo de los 50 nm, no es estrictamente una implementación de la nanolectrónica, ya que no hay una propiedad física relacionada con la reducción de tamaño que esté siendo utilizada. Aun así, la necesidad de la nanotecnología, y de la nanoelectrónica en particular, se justifica a menudo por el hecho de que la ley de Moore — relacionando la mejora de prestaciones con el tamaño más pequeño de los dispositivos — llega a su fin. Las razones son tanto económicas como físicas. Sin embargo este es un argumento debatible. La tecnología del Silicio avanzará con dificultad por este camino durante una década o más. Se espera mantener la tendencia integradora usando dieléctricos de alta K basados en Hafnio y puertas metálicas. Se prevé también que las prestaciones continuarán mejorándose durante 15 años optimizando el diseño del chip, haciendo un uso más eficiente del área de la oblea de Silicio. En el futuro se desplazará la tecnología de dispositivos actuales a dispositivos de superficie, como en los dispositivos tipo trigate.
Una nueva tecnología sólo remplaza una existente con éxito si mejora las prestaciones (incluyendo el coste efectivo) ordenes de magnitud, o si suministra características que la tecnología existente es físicamente incapaz de suministrar. Este es el reto, la búsqueda de nuevas propiedades, paradigmas y arquitecturas para crear la nueva nanoelectrónica
(Fig. 1   nanoelectrónica.jpg)


El estado del arte de la nanoelectrónica dividido en 6 apartados diferentes: Electrónica Molecular, Nanotubos de Carbono, Nanoestructuras semiconductoras, MEMS y NEMS, Interconectores, Espintrónica, y Computación Cuántica



Electrónica Molecular
Es el estudio de propiedades moleculares que pueden llevar al procesado de la información. Desde principios de los años noventa, se está dedicando un gran esfuerzo científico al desarrollo de una nueva electrónica basada en la utilización de materiales moleculares electroactivos. Estos materiales son de naturaleza orgánica, incluyendo desde moléculas de pequeño tamaño (10 átomos) hasta polímeros (macromoléculas), y son capaces de responder a estímulos eléctricos y luminosos de forma similar a los conductores y semiconductores inorgánicos. Sin lugar a dudas, el acontecimiento que más ha contribuido al desarrollo de los materiales moleculares electroactivos fue el descubrimiento de los polímeros conductores (plásticos que conducen la electricidad),    merecedor del premio Nobel de Química del año 2000. Nos encontramos, por tanto, ante nuevos materiales que nos ofrecen las propiedades eléctricas y ópticas de los metales y semiconductores, junto con las atractivas propiedades mecánicas, las ventajas de procesado y el bajo coste económico de los polímeros. A estas ventajas hay que añadir el gran potencial de la síntesis química para modificar las propiedades del material mediante cambios en la estructura química de los sistemas componentes. Los materiales moleculares electroactivos están siendo desarrollados industrialmente para su utilización en aplicaciones tan diversas como baterías orgánicas, músculos artificiales, pantallas de teléfonos móviles, células solares, "narices" electrónicas, etc. En el año 2001 se construyeron los primeros circuitos moleculares, utilizando unas moléculas llamadas rotaxanos, capaces de funcionar como un transistor. Aún se está muy lejos de poder ensamblar un chip utilizando estos materiales, pero las posibilidades son asombrosas


Nanotubos de Carbono
Los nanotubos de carbono son moléculas tubulares de carbono, con propiedades que los hacen muy atractivos y potencialmente útiles para aplicaciones como componentes eléctricos y mecánicos extremadamente pequeños. Exhiben una dureza inusual, propiedades electrónicas únicas y son unos conductores de calor extremadamente eficientes. Las buenas propiedades eléctricas, mecánicas, y químicas de los nanotubos de carbono les hacen candidatos para fabricar dispositivos tales como transistores a escala nanométrica, pantallas de emisión de campo, actuadores, etc.

Investigadores del Rensselaer Polytechnic Institute, junto a un equipo internacional de colaboradores, han descubierto cómo soldar entre sí nanotubos de carbono. También se ha descubierto recientemente que las propiedades semiconductoras de los nanotubos de carbono cambian en presencia de campos magnéticos, un fenómeno único, y que podría causar su transformación en metales a incluso mayores valores de campo magnético

En el 2004 se crecieron nanotubos de carbono de unos 4 cm. de longitud, y recientemente se han visualizado por TEM los átomos de Carbono individuales de SWT, demostrado la capacidad de soldarlos uno a continuación de otro y también de crecerlos sobre sustratos metálicos

Nanoestructuras Semiconductoras

Existen dispositivos tipo diodo y transistor que tienen el potencial de operar en la escala de los nanómetros, a velocidades ultra altas y con una densidad ultra alta de circuitos. Algunos de estos dispositivos pueden ser especialmente útiles debido a sus inéditas características de "output", permitiendo realizar operaciones con menos componentes de los usuales. Esta clasificación englobaría: Resonant Tunneling Hot Electron Transistor RHET, Resonant Tunneling Bipolar Transistor RTBT, Quantum Effect Devices QED, ElectronWaveguide Devices, Quantum Well Modulation Base Transistors, Lateral Quantum Devices, Coulomb Blockade Devices, etc.

 Estructuras de dimensiones nanoscópicas capaces de confinar electrones (incluso uno sólo) en niveles de energía discretos. Nanocristales de semiconductores muestran propiedades ópticas y electrónicas que dependen de su tamaño. Esto los hace extremadamente atractivos en aplicaciones como catálisis, celdas fotovoltaicas, láseres, transistores, etc

NEMS y MEMS

Una derivación actual de la tecnología microelectrónica es el desarrollo de MEMS (Micro-Electro-Mechanical-Systems) chips de silicio y otros materiales en los que se integran no sólo funciones de tipo electrónico convencional (microprocesadores) sino también nuevos elementos funcionales de todo tipo (microsensores, microactuadores, microfluídica, micromotores, microcomponentes ópticos) fabricados mediante técnicas litográficas y de micromecanización por ataque químico anisótropo, similares a las ya conocidas en microelectrónica. Este campo no ha hecho más que nacer y ya se prevé su evolución inmediata, a partir de un desarrollo natural de ingeniería (top-down) no sólo reduciendo aún más su escala sino introduciendo aspectos y procesos típicos de la nanotecnología para dar lugar a los denominados NEMS. En algunos de ellos, por ejemplo, se integran dispositivos nanomecánicos, en otros, utilizando técnicas litográficas o de auto-ensamblado de moléculas orgánicas complejas como proteínas o fragmentos de ADN se integran funciones de reconocimiento bioquímico o biosensores. Importantísimo y relacionado con este, es el campo de los Biochips o "DNA Microarrays" que se ha desarrollado ya enormemente, permitiendo la identificación rápida y económica de grandes sectores del genoma. Actualmente existen ya unas 30 empresas fabricando y comercializando estos "Genome arrays" capaces de identificar del orden de 10.000 fragmentos en un solo chip. Se cree que no está lejos el momento en que se pueda comercializar un chip personal que analice todo el genoma y permita obtener un informe detallado de los condicionantes genéticos más relevantes de cada persona.

Existen muchas otras aplicaciones de los biochips. Por ejemplo, los microarrays de proteínas que se están introduciendo en el campo de la investigación en proteómica, permiten cuantificar todas las proteínas expresadas en una célula. El marcado de los fragmentos que hasta hace poco tiempo se hacía mediante sustancias fluorescentes ha progresado enormemente mediante la adopción de una técnica procedente del campo de los semiconductores y la optoelectrónica: el marcado, casi un código de barras óptico, mediante nanopartículas de semiconductores, los llamados puntos cuánticos. Es un caso paradigmático de interacción interdisciplinar entre la bioquímica y la física cuántica que ha esultado extraordinariamente fructífero, pues estos nuevos marcadores son muy selectivos, estables y no interaccionan ni modifican químicamente las proteínas marcadas.

En este sentido, destacaría el campo de los NEMS actuados magnéticamente, con aplicaciones muy prometedoras en biotecnología, en instrumentación y en estudios fundamentales.


Interconectores

Uno de los principales retos en la fabricación de dispositivos nanoelectrónicos es la conexión entre diferentes componentes. Para esto hay varios candidatos (fig. 2  interconectores.jpg)

El factor limitante de la tecnología semiconductora actual se debe a la disipación de energía. Esta disipación se acelera a velocidades de conmutación elevadas. En nanoestrucuras metálicas, tamaño del orden de la longitud de onda electrónica (unos pocos Å) y longitud menor que el recorrido libre medio (distancia entre colisiones) el transporte es balístico. Esto quiere decir que los electrones no disipan energía en la nanoestructura. Dependiendo de los diseños nanoelectrónicos, y especialmente para la computación cuántica, es importante que se mantenga la coherencia electrónica, que el portador de carga no pierda memoria de su fase. El estado superconductor por ejemplo, es un estado coherente macroscópico, con innumerables aplicaciones hoy en día. Los diseños de circuitos nanoelectrónicos usarán estas propiedades para realizar operaciones de forma rápida y eficiente. Dentro de este campo cabría destacar los trabajos en las supramoléculas unidimensionales conductoras. Los polímeros metal-metal-haluro (MMX) demuestran interesantes propiedades eléctricas y magnéticas y se perfilan como una posible  alternativa a los nanotubos de carbono

 

Espintrónica y nanoestructuras magnéticas

Los dispositivos activos actuales están basados todos, en mayor o menor medida, en la carga del electrón, que fue descubierto a finales del siglo XIX. Recientemente hemos aprendido a hacer uso selectivo de los dos canales de espín. El primer dispositivo espintrónico es el cabezal de lectura de información magnética basado en la magnetorresistencia gigante. El principio es la diferente tasa de dispersión (scattering) a que están sujetos los diferentes canales de espín. Esto hace que una orientación antiparalela de la imanación en las capas magnéticas presente un estado de resistencia alta, y que la orientación paralela presente un estado de resistencia baja. Estos dispositivos se encuentran en los cabezales de los discos duros y el descubrimiento del fenómeno ha merecido el premio Nobel de Física del año 2007 a Albert Fert y Peter Grunberg. En las tecnologías de grabación magnética se desarrollan esfuerzos considerables en medios con anisotropías oblicuas, en medios con la imanación perpendicular y en medios litografiados. Las memorias magnéticas basadas en las uniones túnel ferromagnéticas MRAM han llegado al mercado recientemente (Freescale (4 Mbit MRAM, en el 2006) NEC, Micromem...).

En España hay una excelente comunidad de investigación en magnetismo, trabajando en varios problemas fundamentales y aplicados en la escala nanométrica.

Dentro de este campo cabe destacar los esfuerzos que se están realizando en:

_ Inyección de espín polarizado
_ Válvulas de espín
_ Transistores de espín
_ Túnel de espín
_ Efectos dinámicos y de precesión
_ Propiedades de redes de nanoelementos magnéticos
_ Nanopartículas magnéticas
_ Magnetismo en sistemas no convencionales
_ Biomagnetismo
_ NEMS magnéticos

En este campo cabría destacar iniciativas como el Magnetic Race Track Memory, (S. Parkin et al. IBM) donde la información se graba en paredes magnéticas, un "viejo" empeño de la comunidad magnética (como la memoria de burbuja, bubble memories de los años 70) de crear memorias magnéticas en dispositivos sin partes mecánicas móviles.

Aún compitiendo con tecnologías variadas (materiales de cambio de fase, memorias Flash....) en términos de velocidad de acceso, capacidad de información, fiabilidad, etc., se augura un buen futuro para el disco duro. Para terminar, hay que destacar que este año se ha "inaugurado" oficialmente la era del terabyte, pudiéndose adquirir en el mercado discos duros de esta capacidad



Computación Cuántica

En 1948 Claude Shannon define matemáticamente el concepto de información: con su Teorema de Codificación sobre un Canal sin Ruido, su Teorema de Codificación sobre un Canal Ruidoso y los códigos de corrección de errores. Esto da lugar a la Teoría de la Información. La información y la lógica, el arte de manejar la información, no pueden existir desligadas de las leyes de la naturaleza. En el mundo cuántico la unidad de información es el "qubit" (bit cuántico). Además:

_ La información cuántica no se puede copiar con fidelidad perfecta;
_ La información cuántica se puede transferir con fidelidad perfecta;

_ La medida llevada a cabo en un sistema cuántico destruye la mayoría de la información contenida en él;
_ Sólo se pueden hacer predicciones probabilísticas sobre la base en la que un estado cuántico acabará después de la medida;
_ Ciertos observables no pueden tener simultáneamente valores precisos definidos;
_ La información cuántica puede estar codificada (y generalmente lo está) en correlaciones no locales entre las diferentes partes de un sistema físico;

Los requisitos para fabricar un ordenador cuántico son:

_ Un sistema físico escalable con qubits bien definidos.
_ La habilidad de inicializar el estado de los qbits a un estado arbitrario como | 0000....>.
_ Tiempos largos de coherencia, mucho más largos que el tiempo de operación de las puertas.
_ Un conjunto "universal" de puertas cuánticas.
_ Una medida específica de qubits.
_ La capacidad de convertir qubits estacionarios a viajeros.
_ La capacidad de transmitir fielmente qubits entre sitios específicos.

Se ha demostrado la fabricación de qubits en trampas de iones, cavidades de alto Q, RMN en líquidos y redes de uniones Josephson. Recientemente se ha demostrado experimentalmente que fotones únicos pueden transferir información cuántica entre qubits relativamente distantes.




La nanoelectrónica será, sin lugar a duda, la tecnología del futuro. Su implementación será un proceso gradual, sustituyendo componentes individuales y eventualmente sistemas complejos de forma integra. Las expectativas son grandes, aunque aún está por definir el heredero del transistor. Ése es actualmente el campo de investigación más activo, la fabricación y caracterización de componentes individuales que remplacen a los de Si. Ejemplos son los diodos moleculares, interruptores monoatómicos y el control del transporte en estructuras de punto cuántico. Un segundo campo, con bastante actividad, es la investigación en los posibles interconectores. Aquí, principalmente los nanotubos de carbono y estructuras metálicas u orgánicas auto-ensambladas, están siendo investigados. Muy poco trabajo se está haciendo en las arquitecturas, y el modelado con poder predictivo está en etapas incipientes. Esto es necesario para desarrollar reglas básicas ingenieriles para diseñar sistemas complejos. La situación de la computación cuántica es diferente. Hay mucha actividad en el desarrollo conceptual y de algoritmos. Las implementaciones experimentales de los qubits y del transporte de información entre qubits están comenzando. Quizá una excepción notable es el campo de la criptografía (transporte de información), donde la existencia de estados entrelazados de fotones viajando por guías convencionales ha sido demostrada experimentalmente.

A nivel más general, no está claro con toda certeza que sean los electrones el método elegido para procesar información a largo plazo. La nanoelectrónica debe ser entendida como un campo de investigación general, dirigido a desarrollar el entendimiento de los fenómenos característicos de los objetos nanométricos con la meta de explotarlos en el procesado de la información.


Paginas web:

No hay comentarios:

Publicar un comentario